Search results for "Color confinement"
showing 10 items of 10 documents
Relativistic constituent quark model with infrared confinement
2009
We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of alpha-parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds presented in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and t…
QCD Confinement and the Meson Spectrum
2003
From QCD and lattice calculations two specific forms of quark confining potential, a strict linear and a screened linear confinement, come out. Both forms of the potential, implemented by the one gluon exchange interaction, are applied to the description of heavy quarkonia: cc and bb. Applications to light hadrons, mesons and baryons, are also commented.
Glueball enhancement by color deconfinement
2007
5 pages, 4 figures.-- PACS nrs.: 14.80.-j; 24.80.+y; 25.75.Nq.-- ISI Article Identifier: 000245333000063.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0609219
Calculation of the neutrinoless ββ decay of 76Ge using a quark model with harmonic confinement
1991
Abstract The half-life of the neutrinoless double beta decay of 76Ge into the ground state of 76Se is calculated in a relativistic quark confinement model. The proton-neutron quasi-particle random-phase approximation is used to evaluate the s- and p-wave nuclear matrix elements contained in the decay amplitude. We avoid the closure approximation and calculate the effective vector and axial-vector coupling constants of the hadronic currents using our quark model. In our formulation the recoil matrix element arises from the quark recoil in the decaying neutrons. The recoil and the p-wave effect are discussed and compared with other calculations. From the experimental lower bound for the decay…
European Hadron Facility
1989
In this contribution we survey the physics potential of a facility such as EHF in somewhat general terms. In other words, we outline some fundamental questions in nuclear physics and low energy particle physics to whose advancement EHF can and will make substantial contributions, without going into specific experiments needed to answer them. It is the role of the case studies, presented in the EHF proposal(1), to illustrate the kind of experimental effort (typical beam requirements, characteristic detectors, size of experiments, etc.) needed at EHF for the physics one wishes to clarify.
One-photon decay of the tetraquark stateX(3872)→γ+J/ψin a relativistic constituent quark model with infrared confinement
2011
We further explore the consequences of treating the $X(3872)$ meson as a tetraquark bound state by analyzing its one-photon decay $X\ensuremath{\rightarrow}\ensuremath{\gamma}+J/\ensuremath{\psi}$ in the framework of our approach developed in previous papers which incorporates quark confinement in an effective way. To introduce electromagnetism we gauge a nonlocal effective Lagrangian describing the interaction of the $X(3872)$ meson with its four constituent quarks by using the $P$-exponential path-independent formalism. We calculate the matrix element of the transition $X\ensuremath{\rightarrow}\ensuremath{\gamma}+J/\ensuremath{\psi}$ and prove its gauge invariance. We evaluate the $X\ens…
The neutrinoless double beta decay of 76Ge, 82Se, 86Kr, 114Cd, 128, 130Te and 134, 136Xe in the framework of a relativistic quark confinement model
1991
The half-life of the 0+ → 0+ neutrinoless double beta decay is calculated for 76Ge, 82Se, 86Kr, 114Cd, 128, 130Te and 134, 136Xe and the upper limit for the effective neutrino mass of 3.0 eV is deduced from available experimental data. In addition, the contribution of the right-handed charged weak currents to the effective weak hamiltonian is estimated. The relevant parameters attain the values |〈Λ〉| < 4.1 × 10−6 and |〈ν〉| < 6.6 × 10−8. The nucleonic weak current is treated starting from the current quark level and evaluating the quark current using relativistic quark wave functions obtained from a Dirac equation with a harmonic confinement potential. The nuclear matrix elements of the thus…
Two-flavour lattice QCD correlation functions in the deconfinement transition region
2013
We report on a lattice QCD calculation with two dynamical flavors of the isovector vector correlator in the high-temperature phase. We analyze the correlator in terms of the associated spectral function by performing a fit for the difference of the thermal and vacuum spectral functions, using also an exact sum rule that constrains this difference. Additonally we carry out a direct fit for the thermal spectral function, and obtain good agreement between the two analyses for frequencies below the two-pion threshold. Under the assumption that the spectral function is smooth in that region, we give an estimate of the electrical conductivity.
Spherical multiquark states in the chiral bag model
1984
Abstract We study n-quark systems (n = 3, 6, 12) in the chiral bag model. In order to handle the non-linearities of the model, the hedgehog ansatz for the Goldstone pion field is used. It is found that due to “warping” of the quark orbits in the presence of mean-field pion clouds, a strong repulsion is developed when more than three quarks are put in a bag. This repulsion mechanism turns out to be close to the soliton mechanism discovered by Skyrme two decades ago. Even the magnitude of the repulsion agrees with his. It is also possible to relate the repulsion to the effective quenching of the axial charge of the multiquark system and a suggestion is made that the recently observed quenchin…
Confined quarks and the neutrinoless ββ decay
1990
Abstract The half life of the neutrinoless double beta decay of 76Ge into the ground state of 76Se is calculated in a relativistic quark confinement model. The neutron-proton quasi-particle random phase approximation is used to evaluate the nuclear matrix elements involved in the decay amplitude. We avoid the closure approximation, but compare our results with this approximation. From the experimental half life we deduce an upper limit for the Majorana mass of the neutrino and estimate the right-handed contribution to the charged weak current.